Overview

(1) Our thermal analysis model (thermal equilibrium model) looks good with individual calculations, verified with Rist model, heat mass balance, calorific diagram, etc. However, since the reaction rate is not taken into account in the model, for comprehensive verification, here is checked with the actual BF operation data (lowest fuel ratio record in Japan^{*1}) and verified its reproducibility.

(2) Using the same model, the heat balance in the lower furnace, which decides the fuel ratio, has been shown for ① actual BF, ② current BF (assumption), ③ *SimplLE* (ver.1.ck), and ④ Cupola (separately calculated). Also, clarifying the apparently supplied heat to the lower furnaces (latent heat of fuels, sensible heat of blown-in gas) and the Gross/Net heat supplied to the lower furnaces (total supplied heat), it is shown that the heat of *SimpLE* (*Duplex BF*) lower furnace is the minimum.

Given data	Assumptions		JFE Fukuyama 3BF*1 Conv. BF		SimpLE(ver.1.ck)		Cupola (Foundry)			
Calc. results			Actual	Analysis		Analysis		Analysis		Estimatior
	Temp.	°C	143	81		1500		1500		1574
Hot Metal	С	%	4.4	18		4.5		4.5		3.1
	Si	%	0.2	27		0.4		0.4		1.9
Slag ratio		kg/tp	27	4		304		233		50
	Blast ratio	Nm ³ /tp	934	935		1031	Syngas ;	300+800		664
Hot blast	Temp	°C	13	53		1100	900,1300			450
HOL DIASL	H2O	g/Nm ³	5.	6		23.7		0		3.5
	O2 enrich.	Nm ³ /tp	C	1		45		N/A		0
Cold Oxygen		N/A			N/A	106			N/A	
Top gas	Temp.	°C	7:	3		170		124	Coke-bed top	1500
	Top Gas ratio	Nm ³ wet/tp	unknown	1377		1615		1343	ditto	697
	СО	%dry	20.2	17.2		24.5		32.2	ditto	8.3
	CO ₂	%dry	24.5	26.2		21.3		27.8	ditto	15.6
	H ₂	%dry	1.7	2.3		5.9		36.5	ditto	1.3
Sinter ratio		%	96	.6		85		85	Return pig iron	50%
	Fuel ratio	kg/tp	396	5.1		505		N/A		117
	Coke ratio	kg/tp	354	1.0		305		166.8		117
Fuel	Blown-in fuel ratio	kg/tp	Tar	42.1	PCI	200	Tar	16.3		N/A
	CH ₄	MJ/tp	0	0			Reform.	3,166		N/A
	COG	MJ/tp	0	0				1,093		N/A
Shaft gas efficiency %		97	.5		88.2		95		N/A	
Direct reduction ratio		32	.5		32		0		N/A	
Coke gasificati	on start temp.	°C	unknown	1100		1000		N/A		N/A
W point	Temp		unknown	810		950		817		N/A
Heat Loss			521	480		480		420	Lower Furnace	690

I. Material and Heat Balance in the furnace ; especially JFE Fukuyama 3BF in the furnace and Cupola in the lower furnace

*1) source: Tesu-to-hagane_68(1982)_2362, operation data of 1981

Conclusions:

Inputting the values for calculation from the operation data of JFE Fukuyama 3BF and comparing the calculation results with actual values,

1. Errors in the heat balance, including the starting point of coke gasification, are concentrated in the heat loss in the last line of the table, but the

- errors are seems sufficiently small compared to the overall heat described below.
- 2. Errors in the material balance are concentrated in the furnace top gas, and even with some errors, the results look sufficiently reproducible given that detailed conditions such as raw materials are unknown.
- 3. Therefore, it is seen that thermal material analysis of BFs can be analyzed and verified using a thermal equilibrium model once the main operating variables (DRR, TR, etc.) are determined. However, the DRR (direct reduction rate) of conventional BFs is affected by the lower furnace conditions including the cohesive zone, also by material/gas distribution, so determining it analytically is itself a challenge.
- 4. SimplLE (Duplex BF) is characterized by the fact that the main operating variables (DRR and TR) are uniquely determined*² or adjustable, and a thermal equilibrium model can be analyzed and verified more practically than for conventional BFs.

*2) see Home page(https://simple-labo.co.jp/en/) "Duplex BF"

II. Heat Balance and heat transfer in the lower furnace

1) Heat Balance in the lower furnace

			JFE Fukuyam	ia 3BF*1	Conv. B	F	SimpLE(ver	.1.ck)	Cupola (Foun	dry)
Subject zone of heat balance(gas temperature)			≧1100°C		≥1000°C		≥1300°C		≧1500°C	
INPUT		MJ/tp		14,660		17,310		9,170	estimation \downarrow	4,750
Sensible heat	Burdens preheated	MJ/tp	1100 °C	1,340	1000 °C	1,250	1300 °C	1,440	1200 °C	1,040
	Coke	MJ/tp	1100 °C	460	1000 °C	330	1300 °C	200	1200 °C	210
	Hot blast	MJ/tp	1353 °C	1,790	1100 °C	1,590	1300 °C	460	450 °C	380
							lowest tuyer	es only↑		
Latent heat	Coke	MJ/tp	LCV	9,510		7,810		3,580		3,120
	Fuels	MJ/tp	LCV	1,560		6,330		610		0
	Hot blast	MJ/tp		0		0		2,880		0
OUTPUT		MJ/tp		14,660		17,310		9,170		4,750
Sensible heat	Pig iron & slag ※1	MJ/tp	1481 °C	2,070	1500 °C	2,150	1500 °C	2,020	1574 °C	1,680
	Gases	MJ/tp	1100 °C	2,080	1000 °C	2,200	1300 °C	900	1000 °C	1,620
Latent heat	Gases	MJ/tp		8,010		10,550		5,890	superheated \uparrow	820
Reaction heat	Qr: decomposition h	leat of FeO, Si	0 ₂ , MnO, & P ₂ 0	D ₅						
	Qr ※2	MJ/tp		2,220		2,200		150	Oxidation heat	-60
Heat Loss Qhl	in the lower furnace									
	Qhl %3	MJ/tp		280		210		210		690
Balance				0		0		0		0

2)Apparent heat supply to the lower furnace (Fuels & gas heat supplied)

		JFE Fukuyama 3BF*1	Conv. BF	SimpLE(ver.1.ck)	Cupola (Foundry)
Fuels; primary combustion heat	MJ/tp	11,070	14,140	7,070	3,120
Fuels & gases; sensible heat	MJ/tp	1,790	1,590	460	380
Apparent heat supply	MJ/tp	12,860	15,730	7,530	3,500

3) Actual heat supplied to the lower furnace (Heat trasfered in the lower furnace)

		JFE Fukuyama 3BF*1	Conv. BF	SimpLE(ver.1.ck)	Cupola (Foundry)
Incoming heat on a 25°C ba	isis MJ/tp	14,660	17,310	9,170	4,750
Outgoing heat on a 25°C ba	isis MJ/tp	10,090	12,750	6,790	2,440
Gross heat supply (= $\Sigma \times 1 \sim 3$) MJ/tp	4,570	4,560	2,380	2,310

Subtracting the sensible heat of pig iron and slag (S.H. of P.iron & Slag) at the incoming temperature from the Gross heat supply,

S.H. of P.iron &	، Slag	MJ/tp	1,550	1,510	1,400	1,040
Net heat	on a boundary temp.	MJ/tp	3,020	3,050	980	1,270
supply	basis	עז ינט	3,020	3,030	500	1,270

Discussions on II.:

Net heat supply means the heat supplied to pig iron, slag and external heat loss within the boundary. If the boundary temperature and the quality of iron and slag are the same, the difference in net heat supply is due to the difference in slag ratio, reaction heat (decomposition heat), and external heat loss. Although the apparent heat supplies of Fukuyama 3 BF and current BFs differ by 3GJ/tp, the net heat supplys are almost the same since their direct reduction ratios and slag retios are close. It also means that the difference in fuel ratio mostly comes from the difference in latent heat of the exhaust gas (2.5GJ/tp), which means that a large amount of heat is consumed for fuel gasification (reducing gas production) rather than that in the heat to produce pig iron and slag.

Conclusions on II.:

1. SimplLE can reduce the net heat supply to the lower furnace to 1/3 of current BFs by eliminating the direct reduction reaction there.

2. In addition to eliminating the direct reduction heat, the heat for fuel gasification (reducing gas production) in the lower furnace is also cut off by supplying reducing gas separately through maulti-stage tuyeres. Sum of them reduces the apparent heat supply by 8 GJ/tp from the current BFs, reducing the coke ratio and fuel ratio so much.

III. Amount of outgoing gas from the Lower furnace (for reference)

Outgoing gas ratio	Nm ³ /tp	1377	1615	500	697
Gas pressure of the zone	MpaG	3.6	3.6	3.5	0
Actual outgoing gas ratio at 1300°C	m ³ /tp	1,725	2,023	640	4,018

Conclusions:

1. Outgoing gas ratio is minimized in SimpLE, one third of conventional BF and even less than cupola.

end