The amounts of heat required to achieve carbon neutrality in ironmaking processes

The table below^{*1} summarizes the CO₂ reduction performance of ironmaking (I.M.) processes and their heat consumptions to achieve carbon neutrality (CN) with CCUS^{*2}. Except SimpLE method, >10,000kWh/tp of green power is required when supplementary using CCU (CO₂ recycle), or limited resource of CO₂ storage would be in the risk of much earlier depletion when using CCS (CO₂ storage) since conventional BF, the largest source of CO₂ emissions, is the most energy efficient (= economy) with CCS.

SimplLE can reduce fossil fuel-derived CO_2 by more than 80% without depending on CCUS, while reducing gross energy^{*3} for I.M. by more than 20% from conv.BF. It can also achieve 30% negative emissions without DAC(direct air capture) by recovery of the CO_2 derived from CN fuels. SimpLE is the only solution that can achieve a high level of both CO2 reduction and energy efficiency.

				Conv. BF		$Conv.BF+CO_2 Meas.$		SimpLE (Post-fossil fuel BF)				DRF + Melter	
				2013 year	current	H ₂ Injection	CCU-CH ₄	V.1.ck	$V.1.ckh_2$	V.1.0	V.2 (V.3)	CH ₄ basis	H_2 basis
	Fossil derived C (Offshore Procurement)	Coking coal	kg/tp	475	409	4()9	223		75		57	57
		Non-coking coal, Heavy oil	kg/tp	Coal 136	Coal 160	0	0	Coal 35		Coal 208	0	H.oil 35	0
		CH_4	kg/tp	0	0	0	0	CH4 63~0	0	CH ₄ 53	0	CH ₄ 212	CH ₄ 17
(l)		others	kg/tp	Flux 35		Flux 31			Flux 27	Flux 31		Burnt Flx42, Electrode4	
		Total	kg/tp	645	604	440	440	348~286	285	364	106	349	120
	Fossil fuel heat		GJ/tp	23.9	22.2	15.9	15.9	14.3	10.1	14.8	2.9	18.5	3.9
2	Green energy	Fuels	kg/tp			H ₂ 52	CH ₄ 126		H ₂ 35		Waste		H ₂ 94
		Electricity(heating, melting)	kWh/tp								18* ³ GJ/tp	778	1,500
3	Surplus energy from I.M.	incl. LDG, Tar	GJ/tp	7.9	7.4							0.5	0.5
4	Net Energy for I.M.	excl. heat loss making ${f 2}$	GJ/tp	16.9	15.7	15.7	16.4	15.2	15.2	15.7	10.3 * ⁶	20.6	21.9
(5)	Utility power	Green power in green box	kWh/tp	120	120	160	160	160	160	160	200	200	200
6	Gross Energy for I.M.	incl. ②heat loss,④,⑤	GJ/tp	18.1	16.9	32.6	40.2	16.8	32.8	17.3	12.4* ⁵	28.6	74.7
\overline{O}	CO ₂	derived from $\textcircled{1}$	tCO ₂ /tp	2.4	2.2	1.6	1.6	1.3	1.0	1.3	0.4	1.3	0.44
8	CO ₂ reduction rate		%	100	6	32	32	46	56	44	84	46	81
Overall Green energy required for Carbon neutrality								De-CO, heat is mostly included in ().		
9	De-CO ₂	CO ₂ separation heat for 10,11	MWh/tp	4.73	4.43	3.22	3.22	0.51	0.00	0.51	0.00	2.56	0.88
10	CCU(CH ₄)	Required green H ₂ (incl.②)	kg/tp	430	403	345	356	232	225	243	71	233	174
		Total green PWR(incl.25)*2	MWh/tp	23.3	21.8	1 8.8	19.4	13.2	12.8	13.7	4.2	14.0	11.4
	Gross green fuels *1	$\eta = 35\%$	GJ/tp	201	188	167	174	113	112	118	44	123	110
	Gross Energy *1 for I.M.	including (1)	GJ/tp	225	211	183	190	128	123	133	48	141	114
(11)	CCS(Liquid CO ₂)	CO ₂ liquefying heat	MWh/tp	0.47	0.44	0.32	0.32	0.26	0.21	0.27	0.08	0.26	0.09
		Required green H ₂ (incl.②)	kg/tp	0	0	52	63	0	35	0	0	0	94
		Total green PWR(incl.25)*2	MWh/tp	-0.20	-0.18	2.7	3.3	0.42	2.3	0.43	0.28	1.2	7.0
	Gross green fuels	$\eta = 35\%$	GJ/tp	2.7	2.6	31	37	4.8	24	4.9	11.4	15	73
	Gross Energy ^{*1} for I.M.	including (1)	GJ/tp	29	27	63	78	22	57	22	15	33	77

the most efficient except SimpLE, if CCS can be used

30% Negative Emissions with CCS for 1.1 t CO_2/tp (Additional Green power is 0.14 MWh/tp only)

but CCS cost will be the most and it will deplete CO2 storage much earlier

6. May. '24 SimpL-labo.Co.Ltd. https://simple-labo.co.jp/en

- *1) The values are our estimations. See home page (https://simple-labo.co.jp/en) and note that CO₂ from the transportation of any materials are not taken into account.
- *2) CCU is assumed a methanation (to CH₄) with 100% conversion efficiency. CCS is assumed that CO₂ is liquefied and transported by sea, of which liquefying energy is only considered here.
- *3) Gross energy means the heat equivalent to primary energy. (1) Gross green fuels are the values after subtracting the latent heat of CH₄ produced in CCU from them.
- *4) Surplus energy from "conventional BF" and "DRF + Melter" is deducted from the "total green PWR" on the assumption that it will all be converted into power.
- *5) The amount of heat input from waste is assumed 18 GJ/t (wet LCV), assuming that the thermal efficiency decreases to 2/3 of the fossil fuels when using waste.
- *6) Converting waste usage stops the heat loss (11.5 GJ/tp) of incineration plants, which is subtracted from gross energy for I.M. (same as surplus energy). See Home Page/"SimplLE" Page 9/11.

Discussions

- 1. "H₂ reduction DRF (direct reduction furnace) + Melter (electric melter)" is a trend in CO₂ reduction measures. In order to reduce CO₂ by 80% and to produce 1 ton of pig iron, it requires roughly 1,000Nm³ of hydrogen, 7,000kWh of green power, and 5 times the gross I.M. energy of conv.BFs. And further 20% CO₂ reduction is required for carbon neutrality (CN). With CCU. 1,000Nm³ of hydrogen, 4,000kWh of green power, and twice the gross I.M. energy of conv.BFs are additionally required. With CCS, additional heat will be saved, but it is much more advantageous to chose other processes.
- 2. Europe prioritizes CO₂ reduction, but there are issues from an energy efficiency perspective since steelmaking consumes large energy in itself. Moreover, most of CO₂ emissions from steelmaking occur outside of Europe (and Japan), and energy-intensive CO₂ reduction measures will lead to energy shortages and cannot be widely adopted worldwide. Therefore, the emergence of another CO₂ reduction process is eagerly awaited to achieve global CO₂ reduction ASAP.
- 3. Europe is introducing "Natural gas DRF+Melter" at the 1st Step due to hydrogen infrastructure limitations and as technical steps. But if CCS is allowed to use, retaining natural gas **DRF is far better in terms of gross energy for I.M.** as shown in the table above. Also, there are many places suitable for CO₂ storage in Europe, they could potentially finalize with 1st Step + CCS. In Japan, however, due to higher price of natural gas and lack of suitable sites for CO₂ storage, it is better to reconsider this approach.
- 4. Regarding blue hydrogen with CCS, blue hydrogen should consider H₂ conversion efficiency and transportation efficiency. "CH₄ to H₂ conversion + CCS + H₂ transport" is clearly inferior to " CH_4 direct use + CO_2 transport + CCS" (in the table) in terms of CO_2 storage volume and energy efficiency, so it is excluded from the comparison table.
- 5. To achieve carbon neutrality using CCS, "H₂ DRF+Melter" or any other process using H₂ requires the gross energy for I.M. by more than 2 times. And "conv.BFs with CCS" will be the best in energy efficinecy and production cost. However, since CO₂ storage capacity is finite and geographically limited, its usage will be regulated and limitted to avoid **depletion**, resulting in that CCS cost will be expensive and countries that cannot use CCS economically or politically will continue to emit CO₂.

Conclusion & Proposal

With *SimpLE*, in **Step 1**, by **reducing coking coal and surplus energy**, CO₂ can be reduced by 40-50% while not increasing the gross energy for iron-making. In Step 2, by using waste instead of coal, CO₂ can be reduced by 80% total while actually reducing the gross energy by $>25\%^{*6}$. And in **Step 3**, by **also using CCS**, CO₂ can be reduced by 130% total without the need for DAC while actually reducing the gross energy by 10%.

In terms of gross energy for ironmaking, any "DRF+Melter" requires more than twice as much as SimpLE to achieve CN with CCS, and "conv.BF+CCS" is the 2nd best. But its cost of CCS will be so large as shown yeloow in Fig.1 (see Home Page/Steelmaking routes/ "CO₂ emissions and economic viability of major steelmaking routes" page 9/10). Even if the **CCS cost for CN** in Fig.1 is set so low as 100 \$/tCO₂, it will be a large $co_2 Emission (tco_2/tCS)$ economic buden for the other routes than SimpLE (2 = Step 1, 3 = Step 2 in Fig.1).

SimpLE is the only method satisfying CO₂ reduction, energy efficiency and economic efficiency.

Fig.1 Slab production cost (CP = 100 /tCO₂)